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Abstract. In the software development process, many developers learn from code snippets in the open-source community
to implement specific functions. However, few people think about whether these code have vulnerabilities, which provides
channels for developing unsafe programs. To this end, this paper constructs a source code snippets vulnerability mining system
named PyVul based on deep learning to automatically detect the security of code snippets in the open source community.
PyVul builds abstract syntax tree (AST) for the source code to extract its code feature, and then introduces the bidirectional
long-term short-term memory (BiLSTM) neural network algorithm to detect vulnerability codes. If it is vulnerable code,
the further constructed a multi-classification model could analyze the context discussion contents in associated threads, to
classify the code vulnerability type based the content description. Compared with traditional detection methods, this method
can identify vulnerable code and classify vulnerability type. The accuracy of the proposed model can reach 85%. PyVul also
found 138 vulnerable code snippets in the real public open-source community. In the future, it can be used in the open-source
community for vulnerable code auditing to assist users in safe development.
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1. Introduction

The rapid development of computer technology.
On the one hand, it has accelerated the progress of
human society, but it also brought many threats. Tech-
nology is always a double-edged sword. In recent
years, hacker activities are getting more and more fre-
quent. They use the program vulnerabilities to steal
personal privacy and even launch attacks to endan-
ger national security. As the foundation of computer
systems, software programs have vulnerabilities that
allow criminals to take advantage of them.

During the software life cycle, most of the bugs
come from the development phase. During the soft-
ware development process, developers will mostly
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find code through open-source communities, includ-
ing StackOverflow and GitHub, but few people
consider whether the code on it is safe or not. Suppose
some hackers maliciously upload code or program
with vulnerabilities, and developers do not carefully
review and refer directly to their software. In that
case, it is very likely to leave fatal vulnerabilities [1].

GitHub and StackOverflow [2] are the most pop-
ular open-source communication communities for
software developments. GitHub is a hosting platform
for open and private software projects, hosting many
program source code. StackOverflow is an IT technol-
ogy Q&A website. Developers can submit questions,
browse questions, find relevant content, and so on for
free. Until September 2018, StackOverflow had over
9,400,000 registered users and over 16,000,000 ques-
tions, with the most common topics being JavaScript,
Java, PHP and Python. Many posts contain much
vulnerable code, and research has found that Stack-
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Overflow copies the most code ever containing bugs
[3], which seriously threatens the development of
software programs. Python, one of the most global
popular programming languages, ranks among the
top three in all major programming charts, and has
more than 1,440,000 communication topics on Stack-
Oveflow. Well-known Internet companies, including
Google and Facebook, are using it. Python also has
many vulnerabilities [4]. Rahman et al. [5] found 12
common types of vulnerabilities in Python, including
Command Execution, HardCode, and SQL Injection.

There are many tools for vulnerability mining, such
as Scan Dal [6], Hybri Droid [7] and PREfix [8]. They
are mostly used to detect vulnerabilities in C language
or Java, such as Fortify [9], which can detect vul-
nerabilities in many programming languages. There
is also a certain amount of research on Python vul-
nerability mining. There are mainly the following
methods.

Vulnerability detection based on code similarity
is mainly realized by similarity code, which may con-
tain the same vulnerability. Li et al. [10] proposed an
efficient code similarity detection system, VulPecker.
By learning NVD and the data in the vulnerability
code instance database (VCID), then generated vul-
nerability feature, and the patch database (VPD) is
constructed to generate diff blocks for vulnerabil-
ity code block extraction. Although this method is
effective, it is only applied to C/C++, and the vulnera-
bility database is not perfect. Karnalim [11] proposed
a similarity detection technique, which generates a
syntax tree for program code files, extracts directly
connected n-gram structure token from them, and
uses an information retrieval algorithm to perform
a subsequent comparison, namely Cosine correlation
in the vector space model. Although the accuracy of
this method has been improved to a certain extent, it
sacrifices execution efficiency. Peng et al. [12] Pro-
posed a python vulnerability mining method based on
similarity. This method realizes vulnerability detec-
tion by comparing the similarity between the current
file and the original file containing the vulnerability.
However, this method only considers the similarity
of data flow, and does not consider the similarity of
control dependence. At the same time, the type of
vulnerabilities that this method can detect depends
on the size of the comparison sample set, that is,
the smaller the comparison sample set, the worse the
detection effect, and it is not suitable for large-scale
vulnerability detection in the open source community.

Vulnerability mining for third-party extensions
Mahmoud et al. [13] found that there are many

vulnerabilities in python third-party libraries. PyX-
hon [14] is a plug-in for python security pro-
gramming, which can detect security vulnerabilities
and privacy leaks from third-party extensions. PyX-
hon is a function-oriented analysis. Developers use
it to monitor the process of all function calls;
dynamic byte instruction tracking analysis, which
infers whether the behavior of importing modules
and accessing private DLLs conforms to the secu-
rity policy, and it provides policies to accept or
reject extensions. These security mechanisms do not
require Python language feature, so they are com-
pletely transparent to Python applications. However,
this method can only identify security issues intro-
duced by third parties, and cannot identify other types
of vulnerabilities.

Rule-based vulnerability mining In the rule-
based vulnerability detection method, experts man-
ually analyze all kinds of vulnerabilities to generate
vulnerability rules. Based on the lexical and syn-
tactic analysis, source code modeling, data flow
analysis, stain analysis, etc. Prabakar et al. [15] pro-
posed a SQL injection detection system based on
Aho-Corasick pattern matching. During the detec-
tion process, the system maintains a list of known
abnormal patterns. Anomaly detection is achieved by
applying a pattern matching algorithm to check user-
generated SQL query comparison lists for known
patterns. The rule-based vulnerability detection needs
to rely on experts to customize the rules, but the rules
cannot be fully covered, which is only useful for some
vulnerabilities.

Vulnerability detection based on deep learn-
ing is the current research hotspot. There are many
machine learning algorithms with good results. At
present, there are many attempts in script language
and other programming languages. Vuldeepecker
[16] uses the BiLSTM algorithm to construct the
detection model, then constructs the code gadgets to
extract code feature, and then marks it (0/1). Finally,
it vectorizes them for training the bidirectional long
short-term memory neural network. The experimen-
tal results show that it has a good effect. However,
there is a significant problem of information loss
in this scheme in converting code gadgets into vec-
tors. Simultaneously, this method only applies to the
C/C++ buffer overflow and vulnerability of resource
management error type.

We found that the code in some posts on Stack-
Overflow contains vulnerabilities. Concurrently, in
the context discussion contents of associated threads,
many users discuss the details of the vulnerabili-
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Fig. 1. The framework of PyVul.

ties, including the types of vulnerabilities and repair
methods.

For this reason, the paper proposes a vulnerabil-
ity mining system named PyVul for the source code
snippets of the open-source community. The system
consists of two parts, a vulnerability mining module
for source code snippets and a vulnerability type clas-
sification module for context discussion contents in
associated threads.

The specific contributions of this work are the fol-
lowing:

– The paper constructs a general code feature
extraction method for open-source community.
This method can effectively integrate unstruc-
tured code and extract code feature while
retaining semantic and structural information.

– The paper introduces the BiLSTM algorithm
to the vulnerability mining of Python code and
achieves good results. The accuracy of the model
can reach 85%.

– The paper combines the vulnerability mining of
source code snippets with content mining for the
first time, which realizes the vulnerability detec-
tion of code snippets and uses the OVO SVMs
algorithm to identify its vulnerability types. The
recognition accuracy can reach 90%.

The rest of the paper is organized as follows:
Section 2 is a mathematically formalized problem
definition. Section 3 details the implementation pro-
cess of the PyVul system. Section 4 presents the
experiments and analyses. Section 5 summarizes the
conclusion and proposes future works.

2. Problem definition

Let P = {p1, p2 ..., pn} be a set of post in open-
source community, R(pi) = {r1, r2 ..., rn} represents
the reply corresponding to the pi post. T (ri) =
{si, wi} represents the source code and text content
in each reply.

Our goal is to detect the security of the Python
code snippet si in the post, and determine the type
of vulnerability if it is malicious code. The process
is divided into two steps. The first step is vulnera-
bility code detection. We define the problem as a
binary classification problem. c indicates the label
category, where c = 1 indicates that the code is a vul-
nerable code, and c = 0 indicates that it is a secure
code. We train a model f (�) to detect the label of a
given code snippet si, where f (si) = 1 indicates that
si is a vulnerable code, and f (si) = 0 indicates that
si is a secure code. The second step is the classifi-
cation of vulnerability types. We define the problem
as a multi-classification problem. c = {i1, i2, ...i11}
represents different types of vulnerabilities. We train
a multi-classification model g(�) to detect the corre-
sponding post content wi. where g(wi) = in indicates
that vulnerability type of si is in.

3. Methodology

In this section, the paper will introduce the
source code snippets vulnerability mining system
PyVul for the open-source community. The sys-
tem is mainly composed of four modules. The
high-level design of PyVul is illustrated in Fig. 1.
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Data Collection and Preprocess crawls posts content
from the open-source community and cleans them,
then uses the web tags to separate the source code
and content in the post. Code Feature Extraction uses
AST and data dependence to extract code feature.
Vulnerability Code Detection uses code feature and
BiLSTM algorithm to build a vulnerability classi-
fier for code detection. If the code is benign, outputs
the security code. Otherwise, further, analyzes the
associated context. Vulnerability Type Classification
extracts associated text feature and combine with the
OVO SVMs algorithm to build a type classifier for
vulnerability type classification. Finally, the system
gives the vulnerability types of code snippet to com-
plete vulnerability mining.

3.1. Data collection and preprocess

To collect data from the open-source community,
a crawler has been designed and developed in this
paper. In practical application, we found that differ-
ent pages have different structures, so we adapted
them. In the open-source community, user interac-
tion is based on threads. Users create topic posts in
the community, ask questions, and then other users
reply. In data collection, crawling is also carried out
according to the above organization, and all threads
in the forum are obtained first. Then, according to
the thread, collect all the reply information under
it. For the next step of the better analysis, We use
< code >< /code > < p >< /p > tags to separate
the code and content from the post and store them.

The existing open-source community has some
specific protection mechanisms. Users who do not
login in can only view part of posts. At the same time,
to prevent tracking analysis, many websites have
some anti-crawler mechanisms. In order to evade
these, the crawler adds the mechanisms of simulated
login, random request header, and dynamic IP proxy
pool.

To better carry out the next step of text analysis,
we preprocess the data. Preprocessing includes five
aspects: case conversion, word segmentation, stop
word removal, punctuation removal, and lemmatiza-
tion. First of all, all the data are converted to lowercase
to keep the data format consistency. NLTK [17] is
used to deal with word segmentation and stop words
to ensure its accuracy. At the same time, remove the
nontext data such as punctuation in the data. Finally,
NLTK is used to restore word form to reduce the phe-
nomenon of multiple words with one meaning and
reduce text redundancy.

3.2. Code feature extraction

The source code crawled from the open-source
community is more chaotic and has no uniform
format. There may not be any semantic relation-
ship between these code. If the unprocessed code is
directly used in the machine learning model’s train-
ing, it may increase a lot of overhead. Therefore,
we introduce AST technology to obtain intermediate
structure to extract code feature. The specific steps
are as follows:

3.2.1. Source code normalization
There are many comments in the source code

extracted from the open-source community, these are
not helpful for vulnerable code mining. Therefore, we
use Python regular expressions to remove. Simulta-
neously, We found that the source code indentation in
some posts is incorrect and cannot be analyzed. How-
ever, there may be some vulnerabilities in these codes,
so it is necessary to format them. We use the Python
code formatting tool: Autopep8 to solve this problem.
Autopep8 formats Python program code according
to the specification and eliminate errors caused by
indentation. For code snippets that still cannot con-
struct AST after normalization, such as command line
and non-Python code. we remove it without analysis.

3.2.2. API / Library
API and Library refer to the module imported by

the source code, which is reflected in the code as
import and from......import statements. In Python
code, many library functions have some vulnera-
bilities [14]. When developers import these library
functions, they may bring these vulnerabilities into
their code. Therefore, it is essential to extract the
library dependency from the code. Similarly, the
order in which libraries are imported may be differ-
ent. Therefore, we sort the libraries after extracting
them to unify them and reduce the inaccuracy of the
model caused by code style differences.

3.2.3. Data flow
Code feature extraction is a difficult problem in

static analysis. At present, the mainstream and effec-
tive method is based on data flow [18]. In the analysis
process, we found that the leading cause of source
code vulnerability is that malicious parameters are
not filtered and directly passed into dangerous func-
tions. Through the data flow method, we can extract
the parameters and functions that lead to code defects.
Other code statements that are not related to the
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Fig. 2. Comparison of source code snippet and code feature.

vulnerabilities, such as assignments and definitions,
will be ignored. When extracting the code’s data flow,
we mainly use AST [19] (abstract syntax trees). AST
can parse program source code into a syntax tree,
so developers can modify the syntax tree directly to
change code. AST module provides the possibility for
Python source code security check, program debug-
ging, and syntax analysis.Data flow is the process
of function parameter passing. Function parameters
are passed to another variable through assignments
and other operations, and so on, and finally output.
Through data flow to find the input parameters path,
then extract it and recombine a new function. Remove
the lines of code without parameter conversion.When
there are multiple input parameters in the function
body, it may generate multiple data flows. To facil-
itate analysis, we merge the multiple data flows. In
this paper, the AST module is used to construct the
abstract syntax tree of the source code snippet. Con-
sidering the input as an origin point, tracking the
variables and functions entered by the input parame-
ters, and then extracting these parameters trajectory
as the suspicious code.

3.2.4. Variable substitution
Since the source code in the post comes from dif-

ferent developers, there are big differences in code
habits. If it is directly input into the neural network
for training, there will be some errors. So in this
step, some user-defined variables need to be replaced.
The variables have two main parts. The first part of
the variable is the function name: the user-defined
function name in the extracted function body, such
as getUsers. For the replacement of function names,
use funcN(N = 0, 1, ...n) to replace; the second part
is the replacement of user-defined variables, such as

user id, for the replacement of these variables use
varN(N = 0, 1, ...n) to replace. In this way, errors
caused by differences in user code can be eliminated.

3.2.5. Code recombine
After extracting the import library and data depen-

dent code and completing all variable replacement,
the next step is recombining them. This paper uses a
unified format to sort the dependencies at the source
file’s head and then reorganize the code parts accord-
ing to the original order. The purpose of this is to
maintain the structural and semantic relationships
between code contexts. As shown in Fig. 2, there
is a comparison of source code snippet and code
feature.

3.3. Vulnerability code detection

3.3.1. Data annotation
This paper first uses the tool to label once and then

manually label and review some samples. We define
two labels of source code: “1” (vulnerable code) and
“0” (secure code). Here we use the Python code audit
tool Bandit to complete automatic annotation. The
Bandit [20] tool can find vulnerabilities in Python
source code. During the detection process, Bandit
parses the source code, generates its abstract syn-
tax tree, and then performs security checks for the
abstract syntax tree. After completing the AST scan,
Bandit will directly generate code security reports
for users. First of all, using Bandit to complete the
first annotation will produce many positive samples
and negative samples. In the actual labeling process,
we found that the positive samples accounted for the
majority, and the negative samples were few. For this
reason, it is necessary to label the samples marked as
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“0” manually and then label them again to find some
missing and unrecognized vulnerable code.

3.3.2. Source code vectorization
The input received by the neural network is vec-

torized data, which cannot directly train the source
code. Therefore, it is necessary to vectorize the pre-
processed code feature.

Because in vulnerable code, every character may
have crucial semantic information. Therefore, we
need to divide the source code snippet into tokens,
including keywords, identifiers, operators, and sym-
bols. For example, the source code for the symbolic
representation is as follows:

var4 = var2.execute(var3) (1)

Lexical analysis is expressed as tokens as follows:

var4, =, var2, ., execute, (, var3, ) (2)

In order to convert the above token into a vector,
the Tokenizer method in Keras is used to vectorize it.
We found that the average number of tokens in the
training data is 107, and 93% of the data are less than
200 tokens. Therefore, we use 0 to fill in the data less
than 200, and truncate the data more than 200.

3.3.3. Vulnerability detection model based on
BiLSTM

The neural network is very successful in image
processing, speech recognition, and natural language
processing [21–23], which are different from vul-
nerability detection. This means that many neural
networks are not suitable for detecting vulnerabilities.

RNN [24] (Recurrent Neural Network) is one of
the most commonly used models when using deep
learning to deal with sequence problems. The cur-
rent output of each sequence in the model is related
to the previous output. RNN will take the t-1 time
slice’s hidden node as the input of the current time
slice at the time t. Then it is applied to the calcu-
lation of the current output, and the nodes between
the hidden layers are no longer unconnected but con-
nected. The output of the traditional model’s hidden
nodes only depends on the input of the current time
slice, so RNN has a better effect on sequence data
processing. However, RNN can only memorize the
last state information and cannot handle long-term
dependent information well. Sundermeyer and oth-
ers [25] proposed the LSTM for language modeling.

LSTM (Long Short-Term Memory) is a variant of
RNN. It adds a line to the RNN to express the long-
term dependence of the input information. Therefore,
LSTM has excellent advantages in modeling time
sequence data.

The key of the LSTM model is to add the concept
of “gate”. The gate structure contains a sigmoid func-
tion, which takes a value between 0 and 1, as shown
in Formula 1. Any value multiplied by 0 is 0. In this
way, the value is “forgotten”. Any number multiplied
by 1 is the original value. Therefore, the value will
be “kept”. Important information can be retained, and
unimportant information can be forgotten through the
gate.

σ(t) = 1

1 + e−t
(3)

However, LSTM model can only carry out forward
calculation. Due to the particularity of Python source
code, function definition can be pre or post set, so it
is necessary to calculate backward propagation. BiL-
STM [26] (Bi-directional Long Short-Term Memory)
is a combination of forward LSTM and backward
LSTM. BiLSTM can learn the characteristics of seri-
alization and long-term dependency and capture the
implicit dependency between sequences.

As shown in Fig. 3, in the Forward layer, the for-
ward calculation is performed from time 1 to time
t, and the output of the forward hidden layer at each
time is obtained and saved. In the Backward layer, the
backward calculation is performed from time t to time
1, and the output of the backward hidden layer at each
time is obtained and saved. Finally, combine the For-
ward layer and the Backward layer’s output results
at the corresponding time to get the final output. The
mathematical expression is as follows:

ht = f (w1xt + w2ht−1) (4)

h
′
t = f (w3xt + w5h

′
t+1) (5)

ot = g(w4ht + w6h
′
t) (6)

In the paper, our model network structure includes
the embedding of the Token sequence, the BiLSTM
layer, and then use the Dropout layer to randomly dis-
connect some neurons to prevent overfitting, and the
Dense layer to match the previous layer The neural
network is fully connected to achieve the nonlinear
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Fig. 3. BiLSTM structure diagram.

combination of features, and then the BatchNormal-
ization layer is added to solve the problem of gradient
disappearance and explosion. Next, the Relu function
is used to activate the neurons, and after the Drop,
Dense and BatchNormalization layers are passed
again, since vulnerability detection is essentially a
binary classification problem, we use the Sigmoid
function for activation output, aiming to realize the
detection of vulnerabilities.

3.4. Vulnerability type classification

In source code snippets vulnerabilities mining, we
identify whether the code snippet is safe, but we can-
not judge the vulnerability type. It is also essential to
judge the types of code vulnerabilities. It is helpful
to patch the vulnerability further.

In this part, we first preprocess the text of all the
posts collected, then extract the text feature to fea-
ture representation, and finally use the OVO SVMs
algorithm to analyze each post to get its related vul-
nerability type [27], and then associate the vulnerable
code involved in the post with the vulnerability type
extracted from the text, so as to obtain the vulnerable
code and its vulnerability type.

3.4.1. Text preprocess
Text data can not be directly used for OVO SVMs

model training, so it is necessary to extract text fea-
ture. At present, when extracting text feature, the
commonly used method is to set the feature threshold
according to the feature vector of words in the text,
select the best feature as the text feature subset, and
establish the text feature model.

There are many methods for extracting text fea-
ture, and word frequency weight is still the most
effective method. There are generally many useless
words and symbols in text data. Therefore, it is neces-
sary to preprocess the text, including case conversion,
removal of non-ASCII codes, word segmentation,
removal of stop words, removal of punctuation, stem-
ming, and Lemmatisation. Then count the word
frequency to calculate its weight and sort from the
largest to the smallest. Sort out a new sequence,
and then extract the first N words with the highest
weight.

In summary, the extraction steps of text feature are
as follows:

i First, we need to preprocess the text data to
remove irrelevant content.

ii Calculate and sort all the words and their fre-
quency in each category document, and then
filter and delete the useless words.

iii Calculate the word frequency of the words in
each category and use the previous N words
with the highest frequency as the category’s
feature word set.

iv Merge the feature word sets of all categories
and delete the duplicate words from them. The
final word set is the feature set to be used later,
and then select the feature used in the test set.

3.4.2. Feature extraction and representation
TF-IDF [28] (term frequency-reverse document

frequency) is a statistical method to evaluate the
importance of words in document sets or corpus doc-
uments. If a word appears in the corpus with very low
frequency, but it appears in the document frequency is
very high, it indicates that the word is essential for the
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document, has a strong distinction, and can be used
for classification. On the contrary, it indicates that the
word is not highly differentiated and is not suitable
for text classification. TF-IDF algorithm is used to
express text feature. The formula is as follows:

wik = tfik ∗ log( N
nk

+ 0.01)√∑
i=k[tfik ∗ log( N

nk
+ 0.01)]2

(7)

It can be seen from the above formula that the
higher the frequency of words, the lower the discrim-
ination. On the contrary, the lower the frequency, the
greater the discrimination and the weight. Therefore,
we need to select words with high discrimination to
better the classification effect in selecting text feature.

The primary purpose of normalization is to prevent
the model from being biased into files, resulting in
model errors. The formula is as follows:

a − min

max − min
= b (8)

In the formula, a is the word frequency of the key-
word, min is the minimum word frequency of the
word in all texts, and max is the maximum word
frequency. This step is standardization. When com-
paring word frequency, there may be a big deviation.
Normalization can make the classification of text data
more accurate.

3.4.3. Vulnerability type classification model
based on OVO SVMs

SVM [29] algorithm has exceptional advantages in
text classification. It maps data to high-dimensional
feature space through nonlinear transformation and
classifies data in high-dimensional space with linear
discriminant function, avoiding dimension disaster.
The algorithm’s complexity is independent of sample
dimension; Its mathematical form is simple, geo-
metric interpretation is intuitive, less manual setting
parameters, easy to understand, and use.

Because of the advantages of SVM in performance,
SVM is widely used in text classification. In two
classifications, the SVM algorithm tries to find a
hyperplane to separate two categories. As shown in
Fig. 4, red and blue dots represent different cate-
gories. A is the hyperplane where they are divided,
and the dotted line points are support vectors.

OVO(one-versus-one), referred to as 1-v-1 SVM
[30], its core idea is to build multiple SVM classifiers,
and any two samples build a classifier, then K(K −
1)/2 classifiers need to be designed for K categories.
When the sample is predicted, each SVM classifier

Fig. 4. Maximum interval classification diagram.

will give a score, and the highest one is the prediction
category of the sample.

4. Experiments

4.1. Datasets

Currently, there is no open dataset for Python
malware detection. Therefore, in the experimental
process, all the data are collected and constructed by
ourselves. The data source of the paper was the Stack-
Overflow open-source community. We collected data
through the Security and Python keywords retrieval
method and collected 30,924 topic posts and 51,436
replies. Simultaneously, in order to train the vulner-
ability detection model and the classification model
of code vulnerability types, the data are filtered and
labeled. There are 5,372 data and 11 categories in text
data annotation. There are 5,000 training data labels
in the code feature, including 2,300 vulnerable codes
and 2,700 security codes.

4.2. Evaluation methods

Evaluation indicators are significant for machine
learning evaluation. Different machine learning mod-
els generally need to build different evaluation
systems, and the same model also has different evalu-
ation indicators. Each indicator has a different focus,
such as classification, regression, clustering, topic
model, etc. At the same time, various indicators can
be used for the comprehensive evaluation of differ-
ent models. In this paper, the following indicators are
used for evaluation.
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Table 1
Python vulnerability type and description

Type Description

Command Execution The attacker uses the vulnerability to make the system execute malicious commands to achieve the
purpose of attack. For example: os.system,os.popen.

SQL Injection The attacker inserts malicious code into the requested URL or form to trick the server into running
the SQL command.

Cross Site Script The attacker inserts malicious code into the web page containing the vulnerability, and when the user
loads the web page, it will execute the Trojan horse program, thus causing the attack.

Cross-Site Request Forgery Without the user’s knowledge, forgery information requests other websites to achieve the purpose of
attack.

File Upload A file upload vulnerability means that an attacker uploads an executable to the server and executes the
file. The file can be a Trojan horse, virus or webshell, etc.

Directory Traversal Using the website security verification flaw or the user request authentication flaw to list the server
directory vulnerability utilization way.

HardCode In the source code use plaintext password or user name and other related privacy information.
Insecure Encryption Using unsafe MD5, SHA1, ARC, DES and other algorithms in calculating hash or encryption.
Insecure Connection The insecure connection in Python mainly uses HTTP without TLS.
File Permission The arbitrary operation of files is mainly caused by the high permission given to the files.
Deserialization Deserialization converts serialized data back to variables and program objects in memory.

ROC: The receiver operating feature curve is
a comprehensive indicator reflecting the machine
learning model. The larger the area under the curve
is, the better the model is. Each point on the curve
reflects the sensitivity to the same signal stimulus.

Confusion Matrix: Also called the possibility
table or error matrix. It is a specific matrix used
to visualize algorithm performance, usually super-
vised learning (unsupervised learning, usually using
matching matrix). Each column represents the pre-
dicted value, and the confusion matrix can be used to
represent each category’s recognition rate intuitively.

Precision:

precision = TP

TP + FP
(9)

Recall:

recall = TP

TP + FN
(10)

F1-Score:The harmonic average of precision and
recall, its value approaches the minimum of Precision
and Recall, as shown in the formula:

F1 = 2 ∗ precision ∗ recall

precision + recall
(11)

True Positive: Positive samples predicted to be pos-
itive by the model.

True Negative: Negative samples predicted to be
negative by the model.

False Positive: Negative samples predicted to be
positive by the model.

False Negative: Positive samples predicted to be
negative by the model.

4.3. Experimental setups

To evaluate the vulnerability detection model, we
conducted experiments using a Ubuntu server with a
4-core 3.6 GHz Intel Core i7-7700 processor, 6GB
GeForce GTX 1060 graphics processing unit (GPU),
and 16GB memory.

Vulnerability code detection model: In the vul-
nerability code detection experiment, we randomly
shuffle the dataset, with 50% of the training set,
20% of the test set, and 30% of the verification
set. To prevent overfitting during training, we set
DROPOUT RATE to 0.3. Simultaneously, to verify
the effect of the model, we use the ten-fold crossover
algorithm for verification.

Vulnerability type identification model: in all
categories of text data, we compared the Random
Forest algorithm[31], which is composed of multi-
ple decision trees and is widely used in the field
of multi-classification. In the experiment, we tested
11 common Python vulnerability types, as shown in
Table 1.

4.4. Result & analysis

In the vulnerability detection model, to better ana-
lyze the model’s performance, we build the ROC
curve and the curve of accuracy and loss rate. As
shown in Fig. 5 is the ROC curve of the vulnerability
code detection model. It can be found that the area
under the curve reaches 0.9068, which proves that the
model has good performance.

It can be seen from Fig. 6 that during the training
process, the loss rate continues to drop, from 0.8 to the
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Fig. 5. ROC curve of the vulnerability code detection model.

Fig. 6. Accuracy and loss rate curve of the training set and valida-
tion set.

final 0.3, and the accuracy rate is also rising. Finally,
the accuracy and loss rate on the validation set and
training set tend to be consistent.

Because whether the code contains vulnerabilities
may depend on the context, a neural network that can
handle the context may be suitable for vulnerability
detection. Many existing papers use RNN and LSTM
algorithms for vulnerability detection [32–34]. The
experimental results are shown in the Table 2, whether
it is Precision, Recall, F1-Score, the BiLSTM algo-
rithm results are optimal. Simultaneously, to verify
the performance of the model, we carried out a
ten-fold cross validation experiment. The average
accuracy of the model was 84.35%. This shows that
our model has good performance and strong general-
ization ability.

In the vulnerability type classification experiment,
we compare the Random Forest algorithm with the
OVO SVMs algorithm, as shown in Fig. 7 and Fig. 8,
respectively, showing the confusion matrix of the two
algorithms. The average accuracy of Random Forest
is 87.5%, and the accuracy of OVO SVMs is 89.08%.

As can be seen from the figure, both algorithms
can achieve good results in identifying vulnerability
types. In the classification of XSS, CSRF, Com-
mand Execution, SQL injection, Deserialization, File
Upload, Insecure Encryption, and Insecure Connec-
tion types, the two models can reach about 94%, in
Directory Traversal and HardCode two types of clas-
sification. The OVO SVMs algorithm is better than
the Random Forest algorithm.

To further analyze and compare the model’s recog-
nition ability for different vulnerabilities, we made a
histogram about the accuracy, recall, and F1-score
indicators. It can be seen from Table 3 that the aver-
age accuracy of the model can reach about 89%. The
classification accuracy of most vulnerability types is
above 90%.

In order to verify the actual effect of the model.
We deploy the PyVul system to detect Python posts
on StackOverflow in real-time. Not surprisingly, we
found much vulnerable code. Table 4 shows some
examples of vulnerable code that we found from
StackOverflow. At the same time, these posts have a
great impact. For example, the post with question id
23739832 contains a command execution vulnerabil-
ity code. The post has been viewed more than 1,000
times and has been widespread. The post with ques-
tion id 49308355 contains the vulnerability of too
high file permissions. It has been read more than
8,000 and has been adopted. Meanwhile, we checked
and found that these posts are not in our dataset. It
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Fig. 7. Confusion matrix of Random Forest algorithm.

Fig. 8. Confusion matrix of OVO SVMs algorithm.
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Table 2
Experiment results of comparison algorithms

Algorithm Precision Recall F1-Score

RNN 0.7734 0.7581 0.7342
LSTM 0.8056 0.8073 0.8061
BiLSTM 0.8547 0.8546 0.8546

Table 3
Vulnerability type classification model evaluation

Type Precision Recall F1-Score

Command Execution 0.94 0.92 0.93
SQL Injection 0.96 0.88 0.91
Cross Site Script 0.94 0.91 0.92
Cross-Site Request Forgery 0.91 0.94 0.93
File Upload 0.90 0.92 0.91
Directory Traversal 0.94 0.68 0.79
HardCode 0.73 0.80 0.76
Insecure Encryption 0.84 0.86 0.85
Insecure Connection 0.85 0.92 0.88
File Permission 0.97 0.99 0.98
Deserialization 0.82 0.91 0.86

shows that our system has excellent accuracy and
practical value.

5. Conclusion

This paper builds a vulnerability mining sys-
tem named PyVul for the open-source community’s
source code snippets. It includes a vulnerability min-
ing model based on deep learning BiLSTM neural
network and OVO SVMs algorithm. The open-source
community’s source code is relatively complex, and
many of them are not complete code. Therefore,
the paper first construct a source code preprocess-
ing framework and uses the method based on data
flow to extract the code feature. Simultaneously, the
differences of user-defined are eliminated based on
ensuring the code structure and semantics remain
unchanged. In vulnerability mining, A detection
model based on the BiLSTM algorithm was con-
structed. Compared with RNN, this model can mem-
orize more semantic information. Simultaneously,

Table 4
Some unsafe posts detected by PyVul

Question ID Type Key Code

23739832 Command Execution p = subprocess.Popen(command, shell=True, stdin=subprocess.PIPE)
p.communicate(password)

21106177 SQL Injection username = request.GET(‘username’)
connection.execute(“SELECT id,name,email FROM user WHERE use
rname=%s LIMIT 1”, (username,))

26204473 Cross Site Script xss url = ‘http://www.foo.bar/index.php?ids=”><sCrIpT>alert(‘XSS’)<
/ScRiPt>’
r = requests.get(xss url);

5100539 Cross-Site Request Forgery xhr.setRequestHeader("XCSRFToken", getCookie(’csrftoken’));

20473572 File Upload up file = request.FILES[‘file’]
destination = open(‘/Users/Username/’ + up file.name, ‘wb+’)

3964681 Directory Traversal param = request.GET.get(’param’)
startdir = os.path.abspath(os.curdir)
requested path = os.path.relpath(param, startdir)

56662470 HardCode APP GUEST USERNAME = “ppams.asguest”
APP GUEST PASSWORD = “ppams123456”

35403878 Insecure Encryption iv = ciphertext[:AES.block size]
cipher = AES.new(key, AES.MODE CBC, iv)
plaintext = cipher.decrypt(ciphertext[AES.block size:])

29591313 Insecure Connection r = requests.get(‘http://api.steampowered.com/IPlayerService/GetOwned
Games/v0001/’, params=steaminfo)

49308355 File Permission for file in files:
os.chmod(file, 0o0777)

3006727 Deserialization zf = zipfile.ZipFile(‘zipped pickle.zip’, ‘r’)
sd1 = cPickle.loads(zf.open(‘data.pkl’).read())
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the paper construct a vulnerability type classification
model based on the OVO SVMs algorithm for the
context discussion contents in associated threads to
determine the vulnerability type of the code snippets.
In the experiment, we use ten-fold cross validation to
find that the BiLSTM model and OVO SVM have
significant advantages in vulnerability mining. At
present, The PyVul can only detect whether the code
contains vulnerabilities, but it can not locate the vul-
nerabilities. The main reason is that the granularity of
the code is different. In the future, we will also make
efforts to achieve locating vulnerabilities.
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