An Empirical Study of Malicious Code In PyPI Ecosystem


We conducted an empirical study to understand the characteristics and current state of the malicious code lifecycle in the PyPI ecosystem. We first built an automated data collection framework and collated a multi-source malicious code dataset containing 4,669 malicious package files. We preliminarily classified these malicious code into five categories based on malicious behaviour characteristics. Our research found that over 50% of malicious code exhibits multiple malicious behaviours, with information stealing and command execution being particularly prevalent. In addition, we observed several novel attack vectors and anti-detection techniques. Our analysis revealed that 74.81% of all malicious packages successfully entered end-user projects through source code installation, thereby increasing security risks. A real-world investigation showed that many reported malicious packages persist in PyPI mirror servers globally, with over 72% remaining for an extended period after being discovered. Finally, we sketched a portrait of the malicious code lifecycle in the PyPI ecosystem, effectively reflecting the characteristics of malicious code at different stages. We also present some suggested mitigations to improve the security of the Python open-source ecosystem.

In The 38th IEEE/ACM International Conference on Automated Software Engineering
Wenbo Guo
Wenbo Guo

My research interests include Open Source Software Security and Software Supply Chain Security.